(x^2-17)+64=180

Simple and best practice solution for (x^2-17)+64=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-17)+64=180 equation:



(x^2-17)+64=180
We move all terms to the left:
(x^2-17)+64-(180)=0
We add all the numbers together, and all the variables
(x^2-17)-116=0
We get rid of parentheses
x^2-17-116=0
We add all the numbers together, and all the variables
x^2-133=0
a = 1; b = 0; c = -133;
Δ = b2-4ac
Δ = 02-4·1·(-133)
Δ = 532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{532}=\sqrt{4*133}=\sqrt{4}*\sqrt{133}=2\sqrt{133}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{133}}{2*1}=\frac{0-2\sqrt{133}}{2} =-\frac{2\sqrt{133}}{2} =-\sqrt{133} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{133}}{2*1}=\frac{0+2\sqrt{133}}{2} =\frac{2\sqrt{133}}{2} =\sqrt{133} $

See similar equations:

| 5x20=5x | | 7j+1=–4j+9j+17 | | 180=(6x-1)(5x+13)+58 | | ∠G=(4x–20)° | | 12/{x-12}=-3/2x | | 2(x-24)^2=120 | | x/3+-3=x/9+3 | | 2x+-6=-9 | | 120=(n-2)250 | | -2x=-156 | | 4(4x-4)+x+4=-49 | | 112d-34=9d-1 | | Y=-0.04^2+0.84x+2 | | 4x+0.5(8-x)=46 | | 18/25=x/100x= | | 26-j=15 | | 3(6)-y=26y=-8 | | 9x+4=1x+6(4) | | 7(u-3)-2=-3(-8u+)-u | | 42+7=p | | (9c+8)=–(2c+4) | | 4(3c+1)=40 | | -12+4v=-40 | | 5w-12=6+5w | | 6x-2.00=50+50 | | 1/2(4x-20)=1/3(-6x+3) | | 8x−3=7x+27 | | 5x=3x+20° | | –12=–3(x–1) | | 2(6x-9=12x-18 | | -11n=8-7n | | t+48=3t |

Equations solver categories